From 1 - 3 / 3
  • Radiation belts are hazardous regions found around several of the planets in our Solar System. They consist of very hot, electrically charged particles that are trapped in the magnetic field of the planet. At Saturn the most important way to heat these particles has for many years been thought to involve the particles drifting closer towards the planet. This paper builds on previous work on the emerging idea at Saturn that a different way to heat the particles is also possible where the heating is done by waves, in a similar way to what we find at the Earth. This work is reported in the paper "Acceleration of electrons by whistler-mode hiss waves at Saturn" by E.E. Woodfield et al., 2021. The data provided here enable reconstruction of all the figures in the paper. E.E.W., R.B.H., and S.A.G. were funded by STFC grant ST/S000496/1. R.B.H., S.A.G. and A.J.K. were funded by NERC grant NE/R016038/1 and R.B.H. and S.A.G. by NERC grant NE/R016445/1. J.D.M. and Y.Y.S. were supported by NASA grants NNX11AM36G and NNX16AI47G. University of Iowa (J.D.M.) was supported by NASA contract 1415150 with JPL. Y.Y.S. was supported by EC grant H2020 637302.

  • The SaRIF system forecasts the outer electron radiation up to 24 hours ahead, updated every hour. Risk indicators are provided for four satellite orbits and can be compared against design standards The SaRIF system provides a searchable archive of data for anomaly resolution by satellite operators, designers and underwriters. Funding was provided by ESA contract 4000118861/16/D/MRP (SSA P2-SWE-XIII proto-type)

  • Radiation belts are hazardous regions found around several of the planets in our Solar System. They consist of very hot, electrically charged particles that are trapped in the magnetic field of the planet. At Saturn the most important way to heat these particles has for many years been thought to involve the particles drifting closer towards the planet. This paper adds to the emerging idea at Saturn that a different way to heat the particles is also possible where the heating is done by waves, in a similar way to what we find at the Earth. This work is reported in the paper "Rapid electron acceleration in low density regions of Saturn''s radiation belt by whistler mode chorus waves" by E.E. Woodfield et al., 2019. The data provided here enable reconstruction of all the figures in the paper. The research leading to these results has received funding from: Natural Environment Research Council (NERC), UK, grants NE/R016038/1 and NE/R016445/1 Science and Technology Facilities Council (STFC), UK, grants ST/I001727/1 and ST/M00130X/1. NASA grants NNX11AM36G and NNX16AI47G. The research at the University of Iowa was supported by NASA through Contract 1415150 with the Jet Propulsion Laboratory. European Council (EC) grant H2020 637302.